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Abstract
Individuals with bipolar disorder typically exhibit changes in
the acoustics of their speech. Mobile health systems seek to
model these changes to automatically detect and correctly iden-
tify current states in an individual and to ultimately predict
impending mood episodes. We have developed a program,
PRIORI (Predicting Individual Outcomes for Rapid Interven-
tion), that analyzes acoustics of speech as predictors of mood
states from mobile smartphone data. Mood prediction systems
generally assume that the symptomatology of an individual can
be modeled using patterns common in a cohort population due
to limitations in the size of available datasets. However, indi-
viduals are unique. This paper explores person-level systems
that can be developed from the current PRIORI database of an
extensive and longitudinal collection composed of two subsets:
a smaller labeled portion and a larger unlabeled portion. The
person-level system employs the unlabeled portion to extract
i-vectors, which characterize single individuals. The labeled
portion is then used to train person-level and population-level
supervised classifiers, operating on the i-vectors and on speech
rhythm statistics, respectively. The unification of these two ap-
proaches results in a significant improvement over the base-line
system, demonstrating the importance of a multi-level approach
to capturing depression symptomatology.
Index Terms: Bipolar Disorder, Depression Recognition, i-
vectors, Mobile Health, Hybrid Classification

1. Introduction
Bipolar disorder (BP) is a severe and chronic illness character-
ized by pathological swings in mood, ranging from mania to
depression [1]. It affects 2.6% of American adults [2] and has
devastating effects on an individual’s life, family, and work [3].
It is among the top 10 leading causes of disability in the United
States [4] with up to 20% of people affected taking their own life
[1]. These negative effects increase the necessity and urgency
of monitoring and prioritizing care to mitigate serious episodes.
To this end, mobile health technology can be useful for longi-
tudinal monitoring the health of individuals [5–7]. In this pa-
per, we use speech gathered from mobile phone conversations
during the PRIORI project [8, 9] to train models for predicting
depression in patients with BP. The proposed techniques exploit
both population-general and subject-specific knowledge.

Speech is modulated by the mood of an individual [10].
In particular, the Hamilton Depression Rating Scale (HAMD)
[11], lists speech retardation as one of the indicators of depres-
sion. Previous work showed that it is possible to augment the
clinical diagnosis of depression with objective rating by auto-
matic detection from speech [12–14]. This could be used to
help to better target care to those most in need and help in areas

with scarce resources [15]. However, variations in individual
symptoms make the adoption of such a system difficult.

Many computational models have been proposed to predict
depression from speech [6, 12–14, 16–20]. These models are
normally trained to capture common patterns in cohorts due to
limitations in the size of available datasets. For example, [16]
explores the performance of common speaker-independent clas-
sifiers for detection of depression. Additionally, [17] compares
Guassian Mixture Model (GMM) and Support Vector Machine
(SVM) classifiers using only formant frequencies and their dy-
namics. Subject-independent systems using i-vectors have re-
cently been proposed for depression detection [14, 18–20]. One
important issue of using i-vectors for depression detection is the
limited dataset available [21]. [14] proposes an oversampling
approach to increase the number of available utterances.

There are a limited number of systems that leverage
speaker-specific information in their classifiers. The work re-
ported in [6] incorporates speech patterns along with other
sensor modalities collected from smartphone devices to pre-
dict mood using a subject-specific classifier. Additionally, the
work by Vanello’s group [12, 13] found that jitter, pitch, and
pitch contours were effective indicators of mood from a subject-
specific perspective. However, in order to detect mood effec-
tively on a large scale it is necessary to both understand popu-
lation level indicators in addition to subject-specific variations.

The PRIORI database is a longitudinal collection of cell-
phone speech data from individuals with BP [8, 9]. It contains a
considerable amount of data for each participant. This enables
us to capture subject-specific as well as population-general as-
pects of speech. In this paper, we use an SVM trained with
rhythm to characterize population-general speech [9]. We pro-
pose the use of i-vectors [22] extracted over Mel-Frequency
Cepstral Coeffiients (MFCC) to capture mood variation at the
subject-level using a speaker-dependent SVM. We leverage the
large unlabeled subset of our data to circumvent the sparsity
problems that often accompany i-vector extraction. Further, we
employ the Within-Class Covariance Normalization (WCCN)
technique [23] on the total variability subspace to alleviate the
undesirable effect of mobile phone channels.

The main novelty of our approach is our fusion of a
subject-specific system using unlabeled personal calls with a
population-general system for the detection of depression from
BP speech. The experiments compared this fusion with the
baseline system from [9], which modeled rhythm features in a
population-general manner. Our results showed significant im-
provement from the baseline with the unweighted average recall
(UAR) increasing from .66±.11 to .73±.09 and the area under
the receiver operating curve (AUC) increasing from .69±.15 to
.78±.12. This shows the importance of using both cohort and
subject-specific knowledge when modeling mood.



Mood Total # Per Subject % Per Subject
Euthymic 306 7.1±6.5 36%
Depressed 266 6.2±6.8 27%
Excluded 361 8.4±7.0 37%

Table 1: Distribution of mood in the assessments. Shown are the
total number of observations, the mean and standard deviation
of subject observations, and the mean percentage of each.

2. PRIORI Dataset
The PRIORI dataset is a large-scale collection of smartphone
conversational speech from individuals with BP. The inclusion
criteria are a diagnosis of BP type I or II and the exclusion cri-
teria are a history of substance abuse and/or co-morbid neu-
rological illness. Participants are enrolled for 6-12 months
and are given a smartphone with a secure recording applica-
tion installed, which records their side of every call made. The
PRIORI dataset currently contains data from 43 participants
with an average collection duration of 21.2±14.2 weeks per
subject, including 39,445 calls and over 2,880 hours of speech.

Participant mood is assessed weekly, over the phone, by a
member of the study team using the Hamilton Depression Scale
(HAMD) [11] and the Young Mania Rating Scale (YMRS) [24].
These calls are referred to as assessment calls. The dataset in-
cludes 933 recorded weekly clinical assessments, 23 of which
were transcribed for algorithm development. All other calls
are referred to as personal calls. These calls are neither anno-
tated nor transcribed to protect patient privacy. The data include
phone calls collected only when an individual was not using the
speaker phone. See [9] for more details.

This paper focuses on depression. The labels are binned
into three categories: euthymic, depressed, and excluded. Eu-
thymic is defined as a score of six or less on both the HAMD
and YMRS scales. Depressed is defined as a score of ten or
greater on the HAMD and less than ten on the YMRS, as in
[9]. The goal of this paper is to differentiate between euthymic
and depressed speech. The speech in the excluded class is not
considered. See Table 1 for the data distribution.

3. Feature Extraction
3.1. Rhythm

Depressed individuals exhibit speech that is slowed and has fre-
quent pauses [1]. The rhythm features are extracted and nor-
malized, which was shown effective in previous work [9]. Only
assessment calls are used in rhythm extraction.

Segmentation: Calls are segmented using a noise-robust
method by Sadjadi and Hansen [25] which compensates for
variations in background noise. Their algorithm extracts five
representations of speech likelihood including: harmonicity,
clarity, prediction gain, periodicity, and perceptral spectral flux.
Principal Component Analysis (PCA) is performed to combine
them into a single signal by taking the largest eigenvalue. We
extend this approach by first converting this signal into contigu-
ous speech segments. We then smooth the signal with a Han-
ning window of 25ms and normalize it by subtracting by the 5th
percentile over the call and dividing by the standard deviation to
ensure comparability between calls. Segments of 25ms are cre-
ated whenever this signal exceeds a 1.8 threshold. This forms
a set of overlapping segments which are merged, removing any
silence less than 700ms. We determined these parameters by
validating over the transcribed assessments. Segments longer
than 2s are further divided into subsegments of 2s with 1s over-

Figure 1: Schematic block diagram of i-vector extraction.

lap. Constant segment size is used to ensure that variations in
features are only due to variations in rhythm [9].

Rhythm Features: The rhythm features are calculated for
each subsegment using an algorithm by Tilsen and Arvaniti
[26]. The audio envelope is extracted and the spectral power
ratio and centroid are determined. The first two intrinsic mode
functions (IMF) are then extracted using empirical mode de-
composition [27]. The power ratio between the two IMFs, as
well as the mean and standard deviation of their instantaneous
frequencies are calculated. This forms a total of seven segment-
level statistics that have shown to be related to syllable- and
word-level rhythm [26]. A total of 31 statistics [9] are used to
form the call level feature vector of 217 dimensions.

3.2. i-vectors

Subject-specific mood variation is captured in the i-vector
space. Recent works have confirmed the efficacy of this
technique for predicting depression over a cohort population
[14, 18–20].

i-vector Formulation: Speech contains many sources of
variability, including identity [22], age [28], gender [28], and
critically, mood [14]. These variations can be captured using
the i-vector technique. Its underlying assumption is that factors
of variation lie in a low-dimensional subspace spanned by the
columns of the total variability matrix T , a low-rank rectangular
matrix. An arbitrary speech instance, u, can be represented by
a GMM mean supervector, M(u), which is modeled by:

M(u) = m+ Tw(u) (1)

where m is the supervector constructed from the Universal
Background Model (UBM) trained using all personal call data,
w(u) ∼ N (0, I) is an utterance-dependent identity vector (i-
vector) [22]. The total variability matrix is trained using an Ex-
pectation Maximization (EM) algorithm introduced in [29].

Acoustic Features: 19 MFCCs and log energy are ex-
tracted using a 25ms Hamming window with 10ms step from
the calls with longer than five seconds of speech. They are
normalized using utterance-level Cepstral Mean and Variance
Normalization (CMVN) [30] to compensate for background and
channel noise. This 20-dimensional feature vector is applied to
a feature warping [31] with 3 second sliding window. The final
feature set contains the MFCCs/log energy, their ∆, and ∆∆.

i-vector Extraction: Figure 1 shows the system developed
for extracting i-vectors. We train the UBM (2048 Gaussians)
and total variability matrix (400 dimensions) using the acous-
tic features. Then we extract assessment i-vectors and apply
WCCN [23] on them to compensate for residual channel effect.



3.3. Feature Normalization:

Both feature sets are normalized using the mean and standard
deviation of each subject. Additionally, each fold is globally
normalized so that a mean of zero and standard deviation of one
is attained across all subjects.

4. Data Modeling
SVMs [32] are used to classify both types of features. SVMs
find the boundary that maximally separates two classes. We use
either a linear or radial basis function (RBF) kernel. We weight
the samples to accommodate for class imbalance. Finally, the
output score is the signed distance to the hyperplane.

Various divisions between training, testing, and validation
folds are used in this paper and are defined below:

• Population-General Validation: Testing and validation are
performed on all subjects, leaving one subject out at a time.
It builds a system that is generalized to work on previously
unseen individuals. Subject-independent validation is used.
We require that subjects have at least six calls, including at
least two euthymic and two depressed, to ensure enough data
for normalization and performance metric calculation. This
baseline system was presented in our prior work [9].

• Subject-Specific Validation: Only data from one subject is
used. During testing and validation one call is left out. This
produces a system that can adapt to the features of an individ-
ual. Validation is performed over 10 folds or fewer if there are
less than 10 calls. Only subjects with at least four euthymic
and four depressed calls are used to ensure enough training
data. This system is used for i-vectors because they are suited
to subject-specific modeling, as explained in Section 8.

• Hybrid Validation: A hybrid approach of the above two sys-
tems. Calls across all subjects are used. We perform valida-
tion by leaving one call out. This system uses information
from both the subject of the test call and the population. Vali-
dation is performed over 10 folds with calls from all subjects
distributed across folds. Only subjects with at least six calls,
including at least two euthymic and two depressed, are used.

The kernel type and parameters (cost, gamma) as well as
feature set size are selected during validation. Features are
ranked using a heuristic of Weighted Information Gain (WIG)
to correct for subject label imbalances. This is implemented by
weighted entropy as described in [33]. Each sample weight is
set to the number of subject calls divided by the number of calls
in the subject with the same label. This ensures that the sum of
subject weights is proportional to its total number of samples,
while also giving minority and majority labels equal weight.
Only the test performances of subjects used in all systems are
reported to make system results comparable.

5. Fusion
Four fusion methods (Figure 2) are considered to determine the
effect of combining cohort and person-specific knowledge.

Feature Fusion: Rhythm and i-vectors are concatenated
into one feature vector. Hybrid validation is then performed.

Decision Fusion: We train a rhythm population-general
model and an i-vector subject-specific model. SVM outputs
from both models are normalized using a sigmoid to ensure they
are comparable. We determine the ideal weight (λ) to com-
bine these systems for each test call using subject-specific val-
idation. We find the population-general scores (PG) for the

Figure 2: Diagrams of the system fusions. (a) Hybrid modeling
with concatenated features. (b) Constant, soft, and hard deci-
sion fusions (all in one figure).

system trained using all but the test subject. We determine the
subject-specific scores (SS) through validation by leaving one
additional call out. This is necessary because test subject data
is used in the model. Equation 2 shows the fusion scores (F ):

F = PG× λ + SS × (1− λ) (2)

A higher weight indicates a higher contribution from the
population-general system. During validation, we determine the
weight based on the following three methods:

• Constant: λ is set to 0.5.

• Soft: λ is chosen between 0% and 100% by validating over
increments of 1%. For subjects with fewer scores, there are
often many weights that achieve the maximum performance.
A tie-breaking heuristic is used to determine which weight to
choose in this case. The largest contiguous range of weights
producing the maximum performance is found and the center
weight is selected as λ. This mechanism was chosen to in-
crease the stability of the fusion by selected a weight that is
furthest from other weights that cause drops in performance.

• Hard: Same as soft, except λ is only allowed to be 0% or
100%. This results in only one classifier being selected.

6. Performance Measures
UAR is used as the performance measure for all system and

fusion validation. It is the mean percentage of each class cor-
rectly identified. This gives minority classes equal weight.

AUC is used as an additional test measure to determine a
system’s ability to relatively rank test outputs. Unlike UAR, it
does not have a bias. It is calculated by determining the area
under the curve defined by the amount of true positive and false
positives at all possible thresholds.

Both measures have a chance performance of 0.5 and an
ideal performance of 1.

7. Results
Table 2 shows a summary of results for all experiments, includ-
ing the two component systems and four fusions of systems.

Component Systems: The baseline system from [9] gen-
eralizes rhythmic symptoms across individuals. The subject-
specific i-vector system learns individual patterns in the voice.
Between the two, rhythm has the lower standard deviation of
.11 UAR. Additionally, as seen in Table 3, no subjects per-
form worse than chance when using the rhythm model, show-
ing greater stability. We hypothesize that this stability is due to
the relatively larger number of samples across subjects used to
train the population-general model. This means that the model



System UAR AUC
Population-General (Rhythm) .66±.11 .69±.15
Subject-Specific (i-vector) .64±.17 .70±.18
Feature Fusion .71±.14 .76±.13*
Constant Decision Fusion .72±.15 .74±.16
Soft Decision Fusion .73±.09* .78±.12*
Hard Decision Fusion .71±.11 .76±.13

Table 2: Results for different systems (top) and fusions (bottom).
Stared and bolded results mark significantly better performance
than population-general baseline. (pairwise t-test, p<0.05).

Rhythm i-vector Fusion Mean λ #Eut. #Dep. #Per.
.544 .730 .730 .10 9 14 474
.549 .761 .752 .18 19 14 513
.531 .813 .698 .22 6 16 2832
.707 .829 .829 .30 7 10 327
.570 .750 .740 .47 25 10 1660
.757 .714 .786 .56 5 7 780
.519 .385 .596 .57 13 4 348
.607 .400 .636 .62 7 20 769
.762 .774 .690 .63 7 6 131
.769 .625 .923 .64 26 4 1382
.714 .477 .618 .82 11 10 814
.739 .578 .683 .93 10 9 1483
.833 .417 .792 .93 6 12 558

.66±.11 .63±.17 .73±.09 .54±.27 12±7 10±5 929±741

Table 3: Soft decision fusion and component systems AUCs by
subject in order of increasing weight (w). The number of eu-
thymic (Eut), depressed (Dep), and personal (Per) calls are dis-
played. The last row is the column means and standard devia-
tions. Highlighted rows show when soft decision performs best.

remains mostly consistent between test subjects. Contrast this
with the subject-specific i-vector system where the entire model
changes between subjects. This results in a standard devia-
tion of .17 UAR (Table 2) and four subjects performing below
chance (Table 3). However, the i-vector model performs bet-
ter than the rhythm model for six subjects. This difference in
performance can be further quantified by the low correlation of
.12 between SVM outputs of the two component systems. Prior
work has shown that uncorrelated systems are more effectively
fused [34, 35]. This indicates that fusing population-general
rhythm and subject-specific i-vectors will likely produce better
results than either of its components.

Fusion: Soft decision fusion attained the best performance
of all experiments with a significant (paired t-test) improvement
over baseline of .73±.09 UAR (p=0.045) and .78±.12 AUC
(p=0.020). We hypothesize that soft decision fusion works best,
because it allows for direct tuning of subject contributions from
both features and validation methodologies. There are strong
correlations of .70 and -.67 between the respective rhythm and
i-vector UARs and the mean selected weight. This demonstrates
its effectiveness at selecting the best performing component sys-
tem, unlike the constant decision version which is unable to
moderate their contributions and has less consistent subject re-
sults (not significant, p=0.14). Additionally, there are four in-
stances where the soft decision fusion performs better than both
component systems (highlighted in Table 3. This occurs when
the weight is near 50% and there is contribution from both sys-
tems. This demonstrates its main advantage over the hard select
technique - hard select can generally only perform as good as
the best component system for each subject.

Figure 3: t-SNE plot of i-vectors showing subject separability.
Shapes represent subjects, while the colors depict moods.

8. Discussion
The spatial distribution of the extracted i-vectors provides in-
sight into the effectiveness of this feature at both the individual-
and population-level. The i-vectors are mapped to a two-
dimensional space using t-Distributed Stochastic Neighbour
Embedding (t-SNE) [36], a dimensionality reduction algorithm
that maps similar objects to nearby points and dissimilar ob-
jects to distant points. Figure 3 shows the distribution of the
euthymic and depressed calls (blue and red dots in the fig-
ure, respectively). The individual groupings of the calls are at
the subject-level. This separation at the subject-level suggests
that the technique is effective for differentiating between mood
within a speaker, but not between speakers due to the large
speaker-effect. This speaker-effect would preclude the use of
a population-general i-vector classification. This effect can be
mitigated using subject-specific normalization. However, this
creates strong overlap between the two mood categories, sug-
gesting that i-vectors may be most effective at the individual,
rather than population, level.

9. Conclusion
This paper demonstrates the importance of capturing both co-
hort and subject-specific variations in speech to effectively de-
tect depression in bipolar disorder. This is important for a men-
tal health monitoring system that both aims to be able to provide
immediate help to new users and improved performance over
time. Our paper introduces a soft decision fusion of population-
general rhythm detection and subject-specific i-vector variation
monitoring. The i-vectors are trained in a novel manner by us-
ing the unlabeled personal calls of individuals to learn patterns
in the speech of subjects. This allows for a subject-specific
system to be trained with relatively few assessment calls to ef-
fectively model individual changes in depression. The results
show that the fusion significantly improves performance from
the baseline of population-general rhythm.

The fusion experiments concentrated on learning the
weights in a subject-specific manner because at least 4 samples
of each label type were available. While this type of system
worked well for depression, it may be difficult to adapt to ma-
nia. On average, subjects tend to be depressed three times more
often than manic [37]. Due to this lack of data it may be nec-
essary to consider similar subjects with more data as part of the
fusion. However, this would require an investigation into sub-
ject similarities between speech phenotypes and mood. This
is becoming increasingly important as we begin to model the
personal calls, as population-general symptoms may be more
difficult to find outside of assessments.
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