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Abstract

We describe our entry for the ICCV 2021 Vision4Vitals
Workshop [6] heart rate challenge, in which the goal is to
estimate the heart rate of human subjects from facial video.
While the challenge dataset contains extensive training data
with ground truth blood pressure and heart rate signals, and
therefore affords supervised learning, we pursue a different
approach. We disregard the available ground truth blood
pressure data entirely and instead seek to learn the photo-
plethysomgraphy (PPG) signal visible in subjects’ faces via
a self-supervised contrastive learning technique. Since this
approach does not require ground truth data, and since the
challenge competition rules allow it, we therefore can train
directly on test set videos. To boost performance further, we
learn a supervised heart rate estimator on top of our “dis-
covered” PPG signal, which more explicitly tries to match
the ground truth heart rate. Our final approach ranked first
on the competition test set, achieving a mean absolute error
of 9.22 beats per minute.

1. Introduction
The success of supervised machine learning is highly de-

pendent on the quality and diversity of the ground truth
dataset. In the field of heart rate estimation from facial
videos, ground truth is a tricky business.

Firstly, there is no perfect method to capture ground
truth. There are a variety of mechanisms to measure cardiac
activity through contact with the human body, including
photoplethysmography (PPG), blood volume pulse (BVP)
or electrocardiography (ECG). Each measure has a slightly
different characteristic waveform, and is often out of phase
with remotely observable signs of cardiac activity in the
face from skin flushing (as measured by remote PPG) and
head motion (as measured by ballistocardiography). The
phase variability is often due to synchronization errors be-
tween video camera and ground truth sensor, but may also
change from subject to subject when sensors are placed on
different parts of the body, far from the face. Training a

model to mimic such signals from the visible evidence of
cardiac activity in the face requires learning to overcome
these differences.

Secondly, there is no universally used method to com-
pute heart rate – which is the main measurement (and per-
formance metric) of interest. Heart rate can be computed
in many different ways from many physiological signals. It
can be computed from instantaneous predictions based on
spectral analysis of a moving window, or smoothed predic-
tions using acausal filtering, or low-frequency updates via
peak-to-peak estimates. Since the key metric in the task
of video-based heart rate estimation is to minimize some
distance measure between estimated and ground truth heart
rate, it is important to understand how the ground truth heart
rate is computed from the actual observable signal, in order
to best match it. Unfortunately, as this computation is often
carried out on hardware, it is not always clear.

For this challenge, we decided to apply a new, self-
supervised approach to estimate a remote PPG signal from
facial video without annotations [1]. A significant advan-
tage of this approach is that it removes the need for ground
truth PPG training data, and therefore avoids any known or
unknown synchronization issues. While the approach of [1]
used a deterministic heart rate estimator (converting the es-
timated PPG signal into a heart rate), we instead attempted
to match the dataset ground truth more explicitly via super-
vised learning on our predicted PPG signal, as described
in Sec. 3. Due to the existence of domain shift between
the training and test datasets (Sec. 4), we found that sev-
eral tricks were required to achieve a strong result on the
challenge, as described in Sec. 5. We believe that our final
approach, although arguably somewhat tailored to the chal-
lenge, is attractive in its simplicity, forgoing some of the
complicated pre-processing or feature extraction steps that
are popular in remote PPG methods, as well as the need for
ground truth data. We discuss our findings and highlight
directions for future exploration in Sec. 6.
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Figure 1. Overview of our contrastive approach to learn a PPG signal [1]. We first sample an anchor video clip, xa, of length W from
the source video. This anchor is passed through the PPG Estimator gθ to get ya. A random frequency ratio rf is sampled from a prior
distribution. The warped clip xs

a is then passed through the frequency resampler R to produce the negative sample xs
n. This sample is

passed through gθ to produce the negative example PPG ya. The negative sample is again resampled with the inverse of rf to produce
a positive example PPG yp. Finally, the contrastive loss is applied to the PPG samples, using a PSD MSE distance metric, as described
in Sec. 2.3.

2. Base Model

An overview of our PPG estimation approach is shown
in Fig. 1 and is closely based on concurrent work described
in [1]. We now describe each stage of the pipeline in se-
quence.

2.1. Preprocessing

We preprocess the videos by first estimating a bound-
ing box around the face for each frame using a single-shot
scale-invariant face detector [8]. We add a buffer of 25%
to the box width and height, to make sure the head and
neck are fully captured. For each video, we then smooth the
bounding box locations in time using some simple logic:
if the non-buffered face box for the current frame is out-
side the buffered bounding box for the previous frame, then
we update. If not, then we keep the bounding box position
constant. Updates are carried out smoothly by interpola-
tion over a number of frames (in practice, 0.25 seconds).
This ensures relative stability of the video, while still al-
lowing for occasional smooth movement and re-alignment
if the face moves significantly. From the smoothed buffered

bounding boxes, we extract a 192 × 128 × N pixel vol-
ume, where N is the number of frames in the sequence. In
the initial experiment and following [1], we extract these
in RGB colorspace, but convert to YUV colorspace in later
experiments.

2.2. PPG Estimator

We use a modified version of the 3DCNN-based PhysNet
architecture [7] as our PPG estimator, as described in Ta-
ble 1. The core of PhysNet is a series of eight 3D convolu-
tions with a kernel of (3, 3, 3), 64 channels, and ELU activa-
tion functions. This allows for the network to learn spatio-
temporal features over the input video. Average pooling and
batch normalization are also employed between the layers.
In the PhysNet paper, two transposed convolutions are used
to return the encoded representation to the original video
length. However, we found that these introduced aliasing in
the output PPG signal. We modify this part of the network
to instead use upsampling interpolation (×4) and a 3D con-
volution with a (3, 1, 1) kernel. This upsampling step is re-
peated twice and removes the aliasing in the output. Next,
we perform adaptive average pooling to collapse the spatial



ENCODER in out kernel stride pad

Conv3d + BN3d + ELU 3 32 (1,5,5) 1 (0,2,2)
AvgPool3d (1,2,2) (1,2,2) 0
Conv3d + BN3d + ELU 32 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (2,2,2) (2,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (2,2,2) (2,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)
AvgPool3d (1,2,2) (1,2,2) 0
Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

Conv3d + BN3d + ELU 64 64 (3,3,3) 1 (1,1,1)

DECODER

Interpolate (2,1,1)
Conv3d + BN3d + ELU 64 64 (3,1,1) 1 (1,0,0)
Interpolate (2,1,1)
Conv3d + BN3d + ELU 64 64 (3,1,1) 1 (1,0,0)
AdaptiveAvgPool3d (-,1,1)
Conv3d 64 1 (1,1,1) 1 (0,0,0)

Table 1. Modified PhysNet-3DCNN architecture. The architec-
ture follows an encoder-decoder structure with 3D convolutions to
represent patterns through time; “s” corresponds to stride, “p” to
padding.

dimension and produce a 1D signal. A final 1D convolution
is applied to convert the 64 channels to the output single
channel PPG.

2.3. Training

Sampling. When training, we randomly sample W sec-
onds from a video Xi. For our experiments, we set W to ten
seconds. We denote these subset clips as xa. We randomly
augment our training data by artificially stretching shorter
video clips to W seconds using trilinear interpolation.

Contrastive Training. When performing contrastive
training, we randomly choose a resampling factor Rf be-
tween 66% and 80%. We then pass the anchor video clip
xa through the trilinear resampler R to produce the nega-
tive sample xn. This effectively increases the frequency of
the heart rate by a factor of 1.25 to 1.5. Both xa and xn

are passed through the PPG Estimator gθ, producing ya and
yn, respectively. We then resample yn using the inverse
of Rf to output the positive signal yp, whose frequency
should match ya. Finally, we apply a multi-view triplet loss
(MVTL): from the three output branches – anchor (ya), pos-
itive (yp), and negative (yn) – we take VN subset views of
length VL, calculate the distance between all combinations
of anchor and positive views (Ptot) and anchor and negative
views (Ntot), then compute Ptot−Ntot and scale by the to-
tal number of views, V 2

N . As the distance metric, we use the
power spectral density mean squared error (PSD MSE). We

first calculate the PSD for each signal and zero out all fre-
quencies outside the relevant heart rate range of 40 to 180
bpm. We then normalize each to have a sum of one and
compute the MSE between them.

Training Parameters. In all experiments we use the
AdamW optimizer with a learning rate of 10−5. We set
the number of views (VN ) to four and the length (VL) to
five seconds, and we used a batch size of 4. Out models
were implemented using PyTorch 1.7.0 [4] and trained on a
single NVIDIA Tesla V100 GPU.

2.4. Heart Rate Calculation

Given an estimated PPG signal, we calculate heart
rate by (1) zero-padding the signal for higher frequency-
resolution, (2) calculating the PSD, and (3) locating the fre-
quency with the maximum magnitude within the relevant
heart rate range. We use a simple PSD-based method in-
stead of a learned one to maintain determinism. When cal-
culating instantaneous heart rate, we apply this method over
a sliding window of 10 seconds, with a step size of one sec-
ond. The instantaneous heart rate for each frame within the
window is then smoothed using a Hamming window.

3. Confidence Model
In our experiments we noticed that the PPG often be-

comes noisy when sudden movement is present. In these
moments, it is unlikely that an instantaneous heart rate
could be learned from the noisy signal and any estimated
value is likely to have high error. Because of this, we trained
a confidence model to detect these faulty PPG signals and
replace the previously estimated instantaneous heart rate
with the estimated per-sample median heart rate. This al-
lows for the system to revert to a baseline value when severe
noise is present.

The confidence model takes the estimated PPG signal as
input and converts it to the frequency domain using a short-
time Fourier transform with a window size of 64 and a step
size of one. We then take the absolute value of the fre-
quency domain and drop the last value, returning a tensor
with 33 channels and matching the original input length.
We pass this representation through an encoder consisting
of eight alternating 1D convolutions and ELU activations.
We employ a kernel size of five, a stride of one, and padding
of two for each convolution and use a hidden channel size
of 64. The final convolution returns only one channel and
is followed by a Sigmoid activation. This produces the fi-
nal confidence estimate c for each frame of the input PPG
and instantaneous heart rate (hinstant). We then calculate the
median instantaneous heart rate over the entire sequence
(hmedian). The final heart rate prediction, hestimated, for each
image frame of the video input, is calculated as follows:

hestimated = c× hinstant + (1− c)× hmedian (1)



Figure 2. Out-of-domain lighting variation in the test set. Clus-
tering the test set by background color shows two distinct lighting
modes: bright (left) and dark (right). Since the training dataset
only contains bright samples and not dark, methods which only
train on the training set must generalize across this lighting do-
main gap to perform well at test time.

We train this model for 20 epochs using the challenge
dataset training/validation split, using an L1 loss between
hestimated and the ground truth heart rate.

4. Dataset

The challenge data, which was derived from the
“BP4D+” dataset of the BP4D Multi-Modal Spontaneous
Emotion (MMSE) Corpus [9], contains a total of 1,358
videos with a mean sample duration of 44 seconds and a
standard deviation of 32 seconds. As described in [9], there
are 140 subjects in the BP4D+ dataset, including 58 males
and 82 females, with ages ranging from 18 to 66 years old.
The videos are recorded at 25 Hz and 1392 × 1040 pixel
resolution. The dataset is subdivided into train, validation,
and test sets with 724, 276, and 358 samples, respectively.
Both the train and validation sets are annotated with instan-
taneous heart and respiratory rates, recorded at 25 Hz. We
did not attempt to model respiratory rate in this work. The
train set is further annotated with blood pressure estimates
recorded at 1 kHz, which we resample to 25 Hz to match
the video frame rate. While the train and validation sets
only contain one lighting condition, we observe an addi-
tional dim lighting condition in the test set, as seen in Fig. 2.

5. Experiments

Here we describe the progression of experiments lead-
ing to our final submission. The test set performance of
these experiments from the Codalab competition server1 are
shown in Table 2.

1https://competitions.codalab.org/competitions/
31978

5.1. Baseline

Hypothesis: Our model from [1] should be able to learn
to predict heart rate using this large dataset.

Experiment: Train with training set for 100 epochs, us-
ing 200 random samples per epoch. Test using the model
returned by the final epoch and predict the per-video me-
dian heart rate for all frames.

Conclusion: Our initial experiment resulted in an MAE
performance of 10.70 bpm, significantly higher than the
training and validation MAE. After inspecting the test set,
we discovered a domain shift in lighting affecting around
half of the test set as illustrated by Fig. 2.

5.2. Train on test set

Hypothesis: Because our model does not use supervi-
sion, we can train it directly on the test set, which removes
any domain mismatch between training and testing. The
domain gap can be further addressed by normalizing the in-
put videos to have zero mean and unit standard deviation
across time and transforming them to a YUV color space,
as described in [3].

Experiment: Train with the test set for 20 epochs, using
all test samples per epoch. Transform all input videos to the
YUV color space and Z-normalize them.

Conclusion: By directly trying to address the domain
shift and training on the test set, we get an improved MAE
performance of 10.32. However, as we still only predict
a per-sequence median heart rate at test time, the system
is unable to adapt its predictions to changing heart rates in
longer videos.

5.3. Instantaneous heart rate

Hypothesis: While estimating the median heart rate
likely works well for short sequences, estimating instan-
taneous heart rate will provide better accuracy for longer
videos.

Experiment: We use the PPG estimates from our prior
experiment to compute heart rate over a sliding window
of 10 seconds, with a step size of one second. The in-
stantaneous heart rate for each frame within the window is
smoothed using a Hamming window.

Conclusion: The estimation of instantaneous heart rate
was sufficient to improve MAE to 9.96.
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Figure 3. System diagram for our best-performing test result. The base model is shown in blue and is fully self-supervised. Refinements
to the model are shown in green and their impact on test performance is described in Sec. 5.

Approach MAE ↓ RMSE ↓ R ↑

Sec. 5.1: Baseline 10.70 15.17 0.36
Sec. 5.2: Train on test set 10.32 15.10 0.40
Sec. 5.3: Instantaneous heart rate 9.96 14.98 0.43
Sec. 5.4: Specialist Models 9.44 14.44 0.45
Sec. 5.5: Confidence detection 9.22 14.18 0.47

Table 2. Selected Heart Rate Challenge results. For detailed
descriptions please see Sec. 5

5.4. Specialist models

Hypothesis: We still believe that the presence of mul-
tiple lighting modes in the test set is creating issues for
our model, which might not have the capacity to learn both
modes well. We hypothesize that models which specialize
in single lighting modes may perform better than a model
which tries to learn both. We also believe that we can fur-
ther stabilize the training process by monitoring the nega-
tive maximum cross-correlation (MCC) [1] on the held-out
train set and selecting the epoch with the minimum value.

Experiment: We cluster the training set based on aver-
age background intensity, which yields two clusters of equal
size, and we train a specialist model for each cluster for 20
epochs each. We calculate the MCC using the training set at
each epoch, and select as our test model the snapshot at the
epoch with minimum MCC. We follow the instantaneous
heart rate method as before.

Conclusion: This specialization in models results in the
largest performance improvement yet – to an MAE of 9.44.

5.5. Confidence detection

Hypothesis: When observing the estimated PPG signals,
there are clear instances when the signal is lost – usually
due to sudden facial movement. While it is common to
spend more effect to try to undo facial movement through
more precise facial landmark tracking, due to time restric-
tions we think a coarse but simpler approach may be still be
valuable to try to detect and smooth over these moments of
uncertainty.

Experiment: We use the estimated PPG and instanta-
neous heart rates from the prior experiment. We then train
a confidence model, described in Section 3, to determine a
confidence weight for each frame of the PPG. This weight
is then used to determine the contribution of either the in-
stantaneous heart rate or the per-sequence estimated median
heart rate per frame. An illustration of the complete system
at this point is shown in Fig. 3.

Conclusion: Our confidence method allows the heart
rate estimation to recover from some bad failures in PPG
estimation, improving the MAE performance of our system
to 9.22.

6. Discussion
We have shown how a relatively simple self-supervised

approach can perform well at the task of heart rate esti-
mation, potentially even against more complex approaches
which rely on precise facial landmark tracking or super-
vision from expensive ground truth data. While our final
challenge entry relied on training on the test set – a luxury
afforded to us by the challenge rules and by virtue of our
method – we note that our learned model also permits on-
line estimation on truly held-out test data.

This challenge has brought into focus two important is-
sues. Firstly, we believe it has helped to highlight the po-
tential limitations of heart rate metrics when evaluating re-
mote PPG estimation methods. On the challenge dataset,
we believe that significant further performance gain could
be found by improving our PPG to heart rate estimator.
To avoid artificial performance gains or losses due to this,
a fairer comparison between video-based PPG estimation
methods might be achieved by (i) the inclusion of metrics
reliant on only the underlying physiological signal of inter-
est (i.e. PPG), or (ii) adopting a common heart rate estima-
tion approach for all methods, including the ground truth.

Secondly, it is clear that dealing with domain shift re-
mains a problem in remote PPG, as shown by the relative
success of our approach of learning specialized rather than
general models. While we did not have time to try a meta-
learning approach such as [2], we are curious as to whether
such techniques might help to address this problem when
moving from training to test.



Task ID Task target emotion Head pitch variation Train set MAE ↓

3 sadness 4.6 4.1
9 angry 5.9 4.5
2 surprise 4.5 5.0
5 skeptical 4.6 5.1
7 fear/nervous 6.1 5.4
1 happiness/amusement 4.9 5.7
8 physical pain 5.7 6.0
6 embarrassment 6.1 6.1
10 disgust 7.3 6.4
4 startle/surprise 5.6 6.9

Table 3. Breakdown of estimated heart rate estimation error per video task ID. Since the training data includes both ground truth heart
rate plus the task ID for each video – corresponding to the task that the subject was doing while being recorded – we can compute the
training set MAE of our model on a per-task basis, and compare this against the task target emotions and average head pitch variation [9].
Here we show head pitch variation in green for “lower” (< 5◦) and red for “higher” (≥ 5◦). The five task IDs with the lowest training set
MAE have an average head pitch variation of 5.1 degrees and average MAE of 4.8 bpm. In contrast, the five highest have average pitch
variation 5.9 (+0.8) and average MAE 6.2 (+1.4). This suggests that head pose variation has a significant negative influence on heart rate
estimation. Note that while these figures are computed on the workshop challenge “train” set (in order to know the ground truth), the model
used here did not have access to the train set during training.

6.1. Things we thought about but did not try

Finer-grained specialist networks: We speculate that
clustering in subject identity (rather than image intensity)
in order to train a larger number of per-subject PPG models
might yield further performance improvements. However,
our initial efforts suggest that the per-subject data volume
was not quite sufficient to support this level of specialization
when training from scratch. However, it may be possible to
use fine-tuning approaches or to create an improved system
that determines the confidence of specialist models and falls
back to more general models when necessary.

Improving input video stability: One significant
source of error in PPG estimation is caused by subject mo-
tion, as shown in Table 3. It is likely that improved facial
tracking could help to alleviate this by making the input fea-
tures more spatially stable. Alternatively, it could be bene-
ficial to recognize when subject motion is present and fall
back to a known baseline heart rate estimate. Although
we achieved this to some extent through a supervised con-
fidence mechanism, we believe other, potentially unsuper-
vised approaches may yield better results.

Test adaptation: While it was feasible to train on the
test data in this competition, this would not be possible for
on-line use cases. Besides trying to expand the domain
over which video heart rate estimation methods work well,
it is also important to explore domain adaptation or meta-
learning methods which can adapt quickly to unseen do-
mains of data at test-time.
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A. Appendix
A.1. Reviewer-Prompted Discussion

How robust is a contrastive approach vs. a supervised
approach? We did not have time during the test phase to
measure the relative performance of a contrastive vs. super-
vised approach on this dataset. However, in our concurrent
work we have found that on numerous other remote PPG
datasets, our contrastive method can perform comparably
to and sometimes better than supervised learning [1].

We agree that it remains unclear how well the contrastive
method may perform compared to a supervised method if
the training data is highly varied. If there is input noise
within the valid heart range (here we set this to be 40-180
Hz), this could certainly lead to our model learning the
wrong signal. This is particularly troubling if the dataset
has no ground truth, since there is no way to diagnose the
error through a quantitative metric. However, in our concur-
rent work we introduce the use of a saliency sampler [5] to
help with qualitative diagnosis: by highlighting which parts
of the input image are used by the model to help determine
the estimated heart rate, a practitioner can get visual confir-
mation that the model is behaving as expected. We did not
use a saliency sampler here for expediency, as ground truth
metrics were available and qualitative analysis takes time.

We think it is true that a supervised method is less likely
to suffer from input noise, since the noise would have to
closely match the ground truth target signal in order to cause
the model to “learn a wrong shortcut”. However, we are
yet to see strong evidence that this is a problem in practice,
as measured across five independent datasets (four in [1]
and a further one here, assuming competing methods in the
challenge used supervised approaches). That said, making
the contrastive approach more robust during training is cer-
tainly an area for future work.

Is the approach applicable to respiration rate (RR)
detection? It is possible that the same method could be
used to try to detect respiration rate, with a different prior
over “valid” frequencies (e.g. 5-25 breaths per minute
rather than 40-180 beats per minute). However, we note that
there are several key differences in the application: firstly,
respiration rate is largely visible through the motion cue of
a person’s chest rising and falling, mouth opening and clos-
ing, or nostrils flaring. In contrast, the primary cue used by
our network for rPPG is the appearance change in skin tone.

For RR detection, the model might therefore benefit from
using optical flow or frame-to-frame differencing to help
accentuate the motion cue. Secondly, while the PPG signal
tends to fluctuate in a reasonably smooth manner, since it is
tied to the physics of blood pumping through body tissue,
respiration can be far more disjointed and inconsistent in
time, since breathing can be disrupted by many factors such
as talking, motion and conscious control. Therefore the fre-
quency spectrum of a respiration signal is likely to be more
spread out than that of a PPG signal, which we think would
make the contrastive approach more challenging. We agree,
though, that it may be another interesting avenue to try to
extend the method.


