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ABSTRACT

We present a system for the detection of elevated levels of
driver alertness in driver-facing video captured from multiple
viewpoints. This problem is important in automotive safety
as a helpful feedback signal to determine driver engagement
and as a means of automatically flagging anomalous driving
events. We generated a dataset of videos from 25 participants
overseeing an hour each of driving sequences in a simula-
tor consisting of a mixture of normal and near-miss driving
events. Our proposed system consists of a deep neural net-
work which fuses information from three driver-facing cam-
eras to estimate moments of elevated driver alertness. A novel
aspect of the system is that it learns to actively re-weight the
importance of camera inputs depending on their content. We
demonstrate that this approach is not only resilient to dropped
or occluded frames, but also has significantly improved per-
formance compared to a system trained on any single stream.

Index Terms— affective computing, autonomous driv-
ing, deep learning, multi-camera systems

1. INTRODUCTION

The path to fully autonomous driving will, counter-intuitively,
involve a significant increase in the research and development
of driver-facing technology [1, 2, 3]. One important aspect
of this technology is the estimation of a driver’s state, which
includes factors such as drowsiness, attention and cognitive
load [4, 5]. Estimating this state accurately and efficiently is
critical to a safe human-machine interface in the intermediate
Level 2 and Level 3 [6] stages of autonomous driving.

In this work, we consider the specific problem of detecting
instances of elevated alertness in driver-facing video. This is
of interest for two reasons. Firstly, it can provide an important
cue for a partially automated vehicle to understand if a driver
is in an able state to take over control. Secondly, it might al-
low for improved mining of driving datasets for events with
high uncertainty that provoke surprise, such as near-misses,
which are otherwise difficult to identify. Locating scenarios
with high uncertainty among the large volume of more pre-
dictable scenarios is important, since focusing training and

testing of perception and planning algorithms on them can
help to generate robust models more efficiently [7].

While a number of driver-facing datasets have been pub-
lished in previous work [8], there is a notable lack of datasets
inducing affective information such as surprise. While some
affective datasets [9, 10] do capture this information, they are
often conversational in nature and do not necessarily reflect
the manifestation of affect in driving scenarios. In this work,
we introduce the Toyota Research Institute Affective Driving
(TRIAD) dataset, which consists of reactions from 25 indi-
viduals observing a set of 90 driving scenarios. Compared to
previous work, we incorporate multiple cameras, on the basis
that sensory redundancy from different viewpoints can lead to
improved system robustness and therefore safety.

The problem of surprise detection in video has been well-
studied [11, 12]. The classical approach involves the extrac-
tion and use of hand-coded facial action units as the basis for
building models [13]. However, recent progress in deep con-
volutional neural networks has allowed the learning of richer
image and video representations for facial surprise detection
[14]. We build on recent work that demonstrates the efficacy
of end-to-end learning for emotion recognition [15]. How-
ever, we take this work a step further with the introduction
of a novel technique to dynamically combine together differ-
ent camera viewpoints for the task. Our approach demon-
strates the value of using seemingly redundant information
from multiple camera streams, not only for this task but for
any such task where robust performance is critical.

The dataset and experimental models used in this work
are available for download at [URL to be provided].

2. TRI AFFECTIVE DRIVING (TRIAD) DATASET

2.1. Dash-cam Video Selection and Preprocessing

To create our dataset, we first acquired a collection of dash-
cam videos from YouTube, featuring a diverse variety of rou-
tine and eventful driving scenarios. We filtered the videos
to ensure that they were front-facing and of high resolution,
were consistently right-hand drive, and did not exhibit ex-
cessive camera-shake (to prevent inducing motion sickness).
Ambient traffic noise was added to all event videos missing



Fig. 1. Top: sub-sampled frames from a randomly selected event video containing a sudden cut-in from a lead vehicle (visible
around the fourth frame from the left). Bottom: associated frames from one of the driver-facing reaction videos to this event.

audio tracks. A loud honking sound was superimposed on the
audio during certain events when it made sense in the context
of the video and made the experience more surprising. In to-
tal, 90 videos were curated of which 20 were deemed eventful
or surprise-inducing and 70 were routine or uneventful driv-
ing scenarios. Among the events, moments of high alertness
such as a near-miss or a road accident occurred on average
14 seconds into the video, giving viewers sufficient temporal
context to understand what was happening.

2.2. Driving Simulator Setup

We set up a driving simulator for participants to view the
collected dash-cam videos in a vehicle cockpit and to record
their reactions. The cockpit consisted of an adjustable seat
mounted to a frame with a privacy curtain for better im-
mersion, a large monitor on which to display the video se-
quences and a force-feedback wheel and pedal set for driver
interventions. To record facial reactions, we used three cam-
eras spaced evenly across the cockpit dashboard, capturing
968×728 pixel monochrome video at 15Hz.

The controls and sensors were connected to a central com-
puter to synchronize recordings and playback of the dash-cam
videos. Global timestamps were recorded for every sensor
frame to ensure data synchronization. A supervisor monitored
the experiment remotely to ensure smooth operation.

2.3. Data Collection and Preprocessing

We captured data from 25 participants aged between 18-64.
Capture sessions for participants lasted one hour each. Dur-
ing the session, participants were instructed to monitor a par-
tially autonomous or Level 2 vehicle [6]. They would be
shown videos of the car driving autonomously, but were re-
quired to take over using the wheel and pedals if they believed
it was necessary. Over the course of the experiment, each
participant observed the complete set of dash-cam videos in
a random order. Sample frames from a typical event video
and reaction video are shown in Figure 1. Several subtasks
were interleaved among the videos to improve participant fo-
cus and provide further metadata such as reaction times and
gaze tracking.

Following the capture, we sorted and aligned all sensor
recordings to extract segments corresponding to each of the
dash-cam videos. For the remainder of this paper, we fo-
cus only on the three driver-facing camera recordings. Event
videos were reduced to 8 second clips containing the event.
For non-event videos, a random 8 second clip was extracted.
This created the final dataset: 15 hours of video footage, con-
sisting of 2,250 (90 sequences × 25 participants) × 8 second
video clips from 3 different cameras.

Face-aligned frames were extracted from each camera clip
using OpenFace [16]. This resulted in 120 unique frames
per clip. However, face extraction was not always success-
ful, as the view was sometimes obstructed. In such cases we
interpolated from the closest possible frame. We resized the
face-aligned frames to 48×48 pixels to match the size of the
FER2013 dataset, used later for pre-training our system.

2.4. Data Annotation

Annotation was performed by a group of five annotators
on driver reaction videos to the 20 events. Each annotator
watched 20×25 reaction videos and provided their estima-
tion of the driver’s level of surprise by turning the steering
wheel in response. Their feedback was continuous both in
time and in magnitude, with labels ranging from 0.0 (not
turning the wheel) to 1.0 (turning the wheel 90 degrees or
more). Videos were grouped by subject and were shown in
random order with 2 second breaks in between. This resulted
in a continuous label of surprise for each frame of the event
videos by averaging across annotator ratings. The non-event
videos were not labeled and were assumed to have zero sur-
prise. Binary, clip-level labels were determined based on the
maximum rating over the course of the video.

2.5. Dataset Splits

The reaction video dataset was divided across event videos in
three splits according to the order in which they were viewed
by participants. A participant’s reaction to the 2 first events
and 8 first non-events make up the test set. These reactions
were not conditioned by having observed many other videos,
and were therefore considered the closest to the distribution
of genuine reactions. Reactions to the next 3 events and 9



non-events make up the validation set. The training set was
composed of the reactions to the final 15 events and 53 non-
events.

3. METHODS AND RESULTS

The goal of our experiments was to construct a system to
detect elevated alertness in driver-facing video, regardless of
available camera views. Our initial system used the network
structure of Breuer et al. [15], as detailed in Figure 2. In keep-
ing with [15], we applied dropout [17] after the final convolu-
tional layer (0.25) and after the first dense layer (0.5).

3.1. Pre-training on FER2013 Dataset

To provide better generalisation performance, we opted to
pre-train our baseline model on the FER2013 dataset [18],
which was introduced as part of a facial expression recog-
nition challenge and includes 35,887 face images cropped
to 48×48 pixels found through Google image searches over
seven emotion-related keywords. These keywords were com-
bined with words related to gender, age, or ethnicity to gener-
ate a more diverse set of subjects than available in TRIAD.

Initially, the system was trained on the original FER2013
7-class classification task using balanced batches of size
1, 024 with early stopping after 50 epochs. We used the
Adam optimizer [19] with a learning rate of 10−3 and a
decay of 10−5. Next, we discarded the 7-way output layer
and replaced it with a binary output to represent surprise /
non-surprise. Dataset annotations were similarly converted
into binary surprise / non-surprise. Training was continued
until convergence, after approximately another 50 epochs.
This resulted in a system with 0.914 unweighted average re-
call (UAR) when validating on the FER2013 private test set.
UAR is an average of each class accuracy and is therefore
unbiased by the class imbalance.

To improve model generalisation we made heavy use
of random data augmentation throughout training, including
horizontal flipping, rotations between -10 and 10 degrees,
horizontal and vertical shifts of up to 5%, shear of up to 5%,
zoom of up to 5% and gamma corrections between 0.5 and 2.

Fig. 2. The initial network pre-trained with the FER2013
dataset consisting of three convolutional layers followed by
two dense layers. Each layer was followed by a rectified lin-
ear unit activation, besides the final layer which was followed
by a two channel softmax function.

Fig. 3. The network used to predict elevated driver alertness at
the frame-level. The three camera view models were merged
using a weighted scheme, depending on camera validity.

3.2. Frame-Level Modeling

We next used the pre-trained model to classify frames con-
taining elevated driver alertness within the TRIAD dataset.
The goal of this classification was to fit a model to map the
three face-aligned frames from the cameras to the continu-
ously annotated levels of driver surprise. A particular frame
was considered to contain elevated alertness if the mean of
the annotator ratings was above 0.25. This threshold was
determined by observing the distribution of surprise over the
event annotations. To this end, we used the system shown
in Figure 3, in which face-aligned frames were first fed
through three identical FER2013 pre-trained sub-networks
with shared weights. Feature outputs from the three sub-
networks were then combined using one of three methods:

1. Merge by valid: Sub-network weights w1, w2 and w3

in Figure 3 were set to 0 if the associated camera view
was deemed invalid (determined by the failure of face
detection and alignment). The remaining weights were
normalized to sum to 1 over the valid cameras.

2. Merge by mean confidence: Identical to merge by valid,
except that valid weights were further weighted by a
confidence value. Confidence values were learned by
the addition of a 512-unit fully connected hidden layer
with sigmoid activation branched from the output of
each sub-network, and were normalized to sum to 1
over the valid cameras.

3. Merge by max confidence: Identical to merge by mean
confidence, except sub-network features were merged
using an element-wise maximum rather than mean.

Additional experiments were also performed using single
camera streams. In each case, this produced a combined 512-
dimension vector representation that was followed by another
512 dense layer. Finally, a dense softmax output layer was
used to classify between surprise/non-surprise.

The same learning scheme was adopted as in pre-training.
We optimized over a ground truth lag between 0 and 15
frames (up to one second) to compensate for the annotator



reaction times and found a 6 frame (400 ms) delay to be opti-
mal. The system achieved maximum validation performance
of 0.912 UAR when using the center camera and the mean
and max confidence merging schemes, as seen in Table 1.

Table 1. Validation results on TRIAD of frame-level ex-
periments using different camera inputs and weighting ap-
proaches.

Method Validation UAR
Left camera 0.882

Center camera 0.912
Right camera 0.851

Merge by valid 0.901
Merge by mean 0.912
Merge by max 0.912

3.3. Temporal Modeling

Finally, to incorporate the temporal nature of the problem, we
constructed a system to classify the 8-second video snippets
provided by TRIAD. A snippet was considered to contain el-
evated alertness if it contained a frame with a surprise label
above 0.25. We used the frame-level representation of the
final dense 512 layer output of Figure 3 as the input to this
temporal model. This provided a 512-dimension vector for
each of the 120 frames in a given sequence.

The temporal network, shown in Figure 4, consisted of
three convolutional layers, followed by a Gated Recurrent
Unit (GRU) [20] with dimensionality 64 and additional fully
connected layers. All layers again used ReLU activation, ex-
cept for the softmax output. The convolutional layers were
found to empirically improve classification performance ver-
sus a GRU alone. We used the same learning scheme as
before, but trained only over the new layers of the network,
keeping the frame-level representation fixed.

Fig. 4. The network used to predict elevated driver alertness
in 8-second video snippets. The input to this network is the
512 dimensional representation learned over each of the 120
frames.

Table 2. The test results of the video-level experiments.
Cameras at Test (UAR)

Training Method One Two Three
Left camera 0.766 - -

Center camera 0.720 - -
Right camera 0.792 - -

Merge by valid 0.757 0.815 0.854
Merge by mean 0.773 0.819 0.823
Merge by max 0.862 0.866 0.897

4. RESULTS AND DISCUSSION

We evaluated the performance of six variations of the final
video-level system: training with the three single cameras
(left, center, or right) and training with all cameras using three
different weighting and merging methods. Each system was
evaluated by testing on data with just one, two, or all three
cameras available. The results on the held-out test set are
shown in Table 2.

The results demonstrate that our method of learning to
re-weight the camera views by confidence and then taking
the element-wise maximum to merge the representations pro-
duces the system which is most robust to different test con-
ditions. The highest performance of 0.897 UAR is achieved
when all three cameras are available at test time. However,
the method is also robust to missing cameras and results in
0.862 and 0.866 UAR with only one or two cameras available
at test time, respectively.

5. CONCLUSIONS

This work introduced the TRIAD dataset, a collection of
driver facial reactions to dash-cam videos containing in-
stances of elevated alertness. We described a system for the
detection of such instances, which was designed to be ro-
bust to changes in the available number of camera views at
test time be actively re-weighting the importance of different
camera feeds depending on their content. This is useful when
inputs are sometimes unreliable, as is the case in driver-facing
sensing where cameras can be occluded by various driver ac-
tions. It is also beneficial when transferring to a system with
a different camera setup, including fewer or greater numbers
of cameras.

While we focused on detecting discrete events of elevated
driver alertness, there are many further avenues to explore in
the TRIAD dataset. Due to the continuous nature of the anno-
tations, it should be possible to train a model which outputs
driver alertness that is continuous both in time and rating. We
also plan to explore how this system generalizes to the detec-
tion of anomalous events in naturalistic driver-facing video
datasets.
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