

John Gideon¹, Simon Stent², and Luke Fletcher² Department of Computer Science and Engineering, University of Michigan¹ and Toyota Research Institute²

Motivation

Path to autonomous cars will require driverfacing technology

- Detect drowsiness, attention, and cognitive load
- Needed for intermediate (level-2 and 3) stages of autonomous driving

There is a need for a driver-facing affect dataset

- Many driver facing datasets without annotated affect
- Many affect datasets only consider conversations

TRIAD Dataset Collection

The Toyota Research Institute Affective Driving (TRIAD) dataset

Participants: 25 people Task: Monitor level-2 vehicle and react when needed **Input:** Force feedback steering wheel and pedals **Cameras:** Left, center, and right view

monochromatic - 968x728 pixels - 15hz Face Alignment: Cut to 8 seconds and use OpenFace 90 clips x 8 sec. x 25 participants x 3 cameras = **15 hours**

Driving Simulator Setup

Proctor View

Participant View

A MULTI-CAMERA DEEP NEURAL NETWORK FOR DETECTING ELEVATED ALERTNESS IN DRIVERS

TRIAD Dataset Annotation

20 Events Crashes/Misses

70 Non-Events Routine Driving

Annotators: 5 people **Ground Truth:** Watch each reaction clip and continuously rate between 0 and 1 **Threshold:** Binarize the rating using a 0.25 cutoff Folds: Divided based on order seen by participants

Baseline Methodology

Pretraining

- FER2013 model and dataset
- Specialize for surprise vs. other

Frame-Level Modeling

- Each camera shares weights (FER2013)
- Weighted mean based on camera frame validity
- Also modeled camera confidence using 512 dense
- Used confidence with weighted mean/max merge

Temporal Modeling

- Uses final frame-level 512 dimensional representation
- Clip surprising if any frame-level label above threshold

Project Page: JohnGideon.me/projects/TRIAD

- combining cameras

Training Method Left Camera Center Camera Right Camera Merge by Valid Merge by Mean

- Merge by Max
- with obstructions

sometimes obstructed, cameras)

Future work will explore how to generalize this system for the detection of anomalous events in naturalistic driving datasets

[1] Edmund Wascher et al., "Driver state examination – Treading new paths," Accident Analysis & Prevention, vol. 91, pp. 157–165, 2016. [2] SAE On-Road Automated Vehicle Standards Committee et al., "Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems," SAE Standard J3016, pp. 01–16, 2014. [3] Ian J Goodfellow at al., "Challenges in representation learning: A report on three machine learning contests," in *International Conference* on Neural Information Processing. Springer, 2013, pp. 117–124.

Main Results

• Metric: Unweighted average recall (UAR)

• Training: Use single camera or different methods of

• **Testing:** Use one, two, or all three cameras

Cameras Used at Test Time		
One	Two	Three
0.766	-	-
0.720	-	-
0.792	-	-
0.757	0.815	0.854
0.773	0.819	0.823
0.862	0.866	0.897

Merge methods show performance increase by dealing

Max merging method shows best performance by

capturing most salient features from each camera

Conclusions

• Captured the **TRIAD** dataset combining affect annotation with simulated driving conditions (multiple,

• Demonstrated the ability of a multi-camera system to detect driver surprise, even when missing data

Bibliography